

Abstracts

A Wideband Monolithic Submillimeter-Wave Quasi-Optical Power Meter

C.C. Ling and G.M. Rebeiz. "A Wideband Monolithic Submillimeter-Wave Quasi-Optical Power Meter." 1990 MTT-S International Microwave Symposium Digest 90.3 (1990 Vol. III [MWSYM]): 1315-1318.

A novel monolithic power meter has been developed for submillimeter-wave applications (100GHz to 10THz). The detector is a 4x4 mm Bismuth bolometer integrated on a 1.2 μ m thick dielectric membrane. This approach results in a wideband high-responsivity detector. The power meter is simple to fabricate, inexpensive, and can be easily calibrated using a low-frequency network. Quasi-optical measurements at 185GHz show that the bolometer is polarization independent, acts as a lambertian surface, and could be modelled by a simple transmission line model. The measured low-frequency responsivity for a 70Omega bolometer, at a bias of 1V, and a video modulation of 300Hz, is around 1V/W. The NEP of the detector is around $3\text{nW}\text{Hz}^{-1/2}$. Potential application areas are antenna coupling efficiency measurements and absolute power measurements at submillimeter wavelengths.

[Return to main document.](#)